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We present PREQUEL: Perceptual Reproduction Quality Evaluation for Loudspeakers.
Instead of quantifying the loudspeaker system itself, PREQUEL quantifies the overall loud-
speakers’ perceived sound quality by assessing their acoustic output using a set of music
signals. This approach introduces a major problem: subjects cannot be provided with an acous-
tic reference signal and their judgment is based on an unknown, internal, reference. However,
an objective perceptual assessment algorithm needs a reference signal in order to be able to
predict the perceived sound quality. In this paper these reference signals are created by making
binaural recordings with a head and torso simulator, using the best quality loudspeakers, in the
ideal listening spot in the best quality listening environment. The reproduced reference signal
with the highest subjective quality is compared to the acoustic degraded loudspeaker output.
PREQUEL is developed and, subsequently, validated using three databases that contain bin-
aurally recorded music fragments played over low to high quality loudspeakers in low to high
quality listening rooms. The model shows a high average correlation (0.85) between objective
and subjective measurements. PREQUEL thus allows prediction of the subjectively perceived
sound quality of loudspeakers taking into account the influence of the listening room and the
listening position.

0 INTRODUCTION

Over the past decades, models for the perceptual eval-
uation of audio signals have been introduced for a wide
range of application areas. They allow assessment of the
quality of time variant, nonlinear systems. As such, they
are essential for quality assessment of low bit rate speech
and audio coding, as used in the telecommunication [1–5]
and music [6–9] industries. These models assess the sys-
tem’s signal adaptive properties by feeding them real world
speech and/or music signals. They measure the quality of
the system’s output signals by processing both a reference
and a degraded signal, using a psychoacoustic model. The
difference between the internal representations of both sig-
nals is assessed by a cognitive model, which provides an
objective quality rating of the degraded signal (see Fig. 1).
This quality is expressed in terms of subjects’ subjective
Mean Opinion Score (sMOS), on a scale from 1 to 5 [10]
(see Table 1). Please note that this approach quantifies the
quality of the system’s output and does not characterize it
directly by a set of technical parameters such as frequency
response, harmonic distortion, etc.

Traditional research in loudspeaker reproduction quality
follows a classical approach. Instead of characterizing the
perceived sound quality produced by the loudspeakers, one
quantifies the loudspeaker system directly on the basis of

a set of technical measurements. An extensive overview of
this approach is given by Toole [11–14]. Although a loud-
speaker is to a large extent a linear time invariant system,
quality assessment is difficult. This is due to the fact that a
one dimensional input music signal (i.e., an amplitude as a
function of time) produces a four dimensional output (i.e.,
a pressure as a function of space and time). This output is
only assessed using two pressure waves at the entrance of
our ears, as a function of time. Furthermore, most music is
enjoyed through the use of two or more loudspeakers that
interact with the room and with each other. Room reflec-
tions, resonances, and comb filtering have a major impact
on the reproduction quality [14].

When placed in an anechoic room, loudspeaker repro-
duction quality is unsatisfying. In stereo, we get comb fil-
tering between the outputs of the two loudspeakers and
there is no sense of envelopment due the lack of lateral
reflections. This is illustrated in Fig. 9.7 of Toole’s book
[14], where measurements are shown for two loudspeakers
located in an anechoic and a standard listening room. In
a normal listening room, the comb filter effects between
the two loudspeakers are reduced due to room reflections;
however, they are still visible and audible when listening to
a phantom center signal produced by left/right correlated
noise or music. Furthermore room reflections themselves
introduce comb filter effects.
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Fig. 1. Overview of the basic principle used in models for the
perceptual evaluation of audio signals. The psychoacoustic and
cognitive model are used to create an objective quality measure
that uses the reference signal X(t) and the degraded output, Y(t),
of the device under test. This objective quality measure is used to
predict the subjective quality of the degraded signal in terms of a
mean opinion score.

Table 1. Absolute category rating listening quality
opinion scale [10]. The mean calculated over a set of

subjects is called the subjective Mean Opinion
Score (sMOS).

Quality Score

Excellent 5
Good 4
Fair 3
Poor 2
Bad 1

Characterization of loudspeakers’ radiation pattern into
space has only limited value because the interaction be-
tween the listening room and the loudspeaker will deter-
mine the pressure waves at the entrance of our ears. When a
loudspeaker is reproducing a music signal in a room, radia-
tion pattern measurements—like on- and off-axis pressure
response, power response, and directivity index—can at
best only predict the relative average perceived sound qual-
ity of the loudspeaker, even when it is supplemented with
other technical measurements such as harmonic distortion
and rub/buzz characterizations [12, 13, 15, 16]. A certain
loudspeaker may sound excellent with one type of music
signal, while the same setup may show low quality with
another type of music signal. A high quality loudspeaker
evaluated at a non-optimal listening spot in a room may
sound worse than a low quality loudspeaker evaluated at

the optimal listening spot. Although some approaches use
signal properties at the listening place [17] or room char-
acterizations [18, 19], no method exists yet that allows to
assess the quality of a single musical fragment when re-
produced over a loudspeaker set up in a certain room on a
certain listening spot without having to measure any tech-
nical parameter of either the loudspeaker or the listening
room.

Instead of quantifying the loudspeaker system with tech-
nical measurements, an unconventional approach can be
chosen: quantification of the loudspeakers’ perceived sound
quality in normal listening rooms, with music signals, on
the basis of a perceptual model that operates on binaurally
recorded signals. Tan et al. [20, 21] described a model for
predicting the effect of various forms of nonlinear distor-
tions generated by electroacoustic transducers on the per-
ceived quality of speech and music signals. However, their
subjective experiments made use of headphones to judge
the audibility of loudspeakers’ distortions. Hence, they did
not take into account the influence of the listening room
and listening position, which both have a significant im-
pact on the listener’s perceived loudspeaker reproduction
quality. Gabrielsson et al. [22, 23] assessed the sound qual-
ity of loudspeakers directly using subjective experiments,
by applying a decomposition of the acoustic output into
perceptual dimensions (e.g., clearness, loudness, nearness,
and spaciousness). However, they did not develop an objec-
tive measurement method using this data. Conetta et al. [24,
25] used the ideas of source localization, envelopment, cov-
erage angle, ensemble width, and spaciousness to describe
a model that successfully assesses the spatial audio percep-
tion quality. While this model is successful in its specified
domain, it does not generalize to loudspeakers’ overall per-
ceived sound quality and is limited to a small number of
high quality loudspeakers and listening environments.

Whereas previous research focused on the quantification
of the loudspeaker system itself or on specific aspects of
the acoustic output of loudspeakers, the aim of this paper
is to generalize to loudspeakers overall perceived sound
quality in a wide variety of environments, using a diverse
set of stereo recorded music fragments that are played over
the loudspeaker systems. This approach thus does not need
any technical measurements on the loudspeaker, it only uses
recordings of musical fragments played over the loudspeak-
ers. Consequently this paper does not measure nor specify
any technical parameter for the loudspeakers that are used.
This new perceptual modeling approach allows a direct
comparison between the perceived quality of an excellent
loudspeaker in a bad reproduction room/non-optimal lis-
tening spot with that of a poor loudspeaker in an excellent
reproduction room/optimal listening spot using any musi-
cal fragment. The approach thus also takes into account the
well-known effect that a loudspeaker may have excellent
sound quality for one type of music signal on a specific
room-listening spot, while for another type of music signal
on the same room-listening spot it may show a low sound
quality. In order for this approach to be applicable in a wide
variety of circumstances a wide quality range of different
loudspeakers are used from high quality studio monitors
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(e.g., Quad ESL-989) to small plastic housing PC loud-
speakers. Audible differences as assessed in this paper are
thus extremely large and the focus of the paper is to see
if a perceptual modeling approach can be used to predict
these large quality differences. This perceptual approach
introduces two major challenges:

1. Ideal Reference Signal: In the assessment of an elec-
tric input and output device, one can ask subjects to
compare the reference electric input (the ideal) to the
degraded electric output over a headphone. When rep-
resenting the headphone in the perceptual model as a
simple system with a pre-defined frequency character-
istic, the model can exactly mimic the subjective test.
However, it is very difficult to provide an acoustic
reference signal to the subject in loudspeaker repro-
duction assessment that can be directly compared to
the acoustic degraded loudspeaker output.
There are two different exact reference approaches
possible [26]:

a. “Here and now,” where we have the illusion that
the reproduced sound is present in the listening
room; and

b. “There and then,” where we have the illusion that
we are present in the room where the recording
was made.

Both approaches are valid hi-fi goals but require dif-
ferent recording and playback techniques. “Here and
now” requires anechoic recordings that are evaluated
in the listening room by playing them over the loud-
speaker under test. Thus, we can directly compare the
“live” signal (that was first recorded in the anechoic
room) with the playback of the anechoic recording.
“There and then” requires standard recordings that
are reproduced over the loudspeaker to be tested and
recorded in the playback room with a head and torso
simulator (HATS). These HATS recordings are then
compared to an ideal HATS recording of the “live”
event. These recordings have to be assessed with a
correct, individually-equalized headphone.

In this research we take a pragmatic approach, bin-
aural recordings of the reproduced signals are made
using a HATS with realistic silicon-rubber pinna and
two DPA 4060 in ear microphones, while subjects
judge the loudspeaker output on the same listening
spot as the recordings. Reference signal recordings
are made using the best quality loudspeakers avail-
able, in the ideal listening spot and in the best quality
environments available. The overall sound quality of
all reproduced signals are judged by subjects using the
sMOS, and the recordings with the highest sMOS are
taken as the reference recordings in the development
of PREQUEL (see Fig. 1). Note that in this approach,
the subjects have no reference available and use an
unknown, internal, ideal to judge the loudspeaker re-
production quality.

2. Background Noise: When assessing the loudspeaker
reproduction in a wide variety of environments, lev-

els of background noise will differ. While this audible
background noise is only marginally taken into ac-
count by subjects in their assessment of the acoustic
quality due to the effect of auditory scene analysis
[27], most models are not robust against the impact of
this background noise. This will be solved by intro-
ducing a noise suppression algorithm that reduces the
noise found in the recorded acoustic signals.

In order to successfully quantify the loudspeaker
reproduction quality, we present a unique model bap-
tized the Perceptual Reproduction Quality Evaluation
for Loudspeakers (PREQUEL). It is based on the core
elements found in the perceptual evaluation models
as developed within ITU for speech [1–5] and music
[6–9] and is extended with an improved masking al-
gorithm, based on the idea of lateral inhibition [28].
It successfully implements the solutions to the above
mentioned problems and is developed on the basis of
the following criteria:! Overall Sound Quality: Instead of focusing on the
technical characterization of the loudspeaker system
itself or on specific aspects of the acoustic output, the
model quantifies the listener’s quality of experience.! Robustness: The model can be used on a wide variety
of loudspeakers in a wide variety of listening environ-
ments/positions.! Stability: The model accurately quantifies the sMOS
of loudspeaker systems that have not been used in the
training of the model.

The remainder of the paper is structured as follows. Sec. 1
introduces a general overview of the perceptual model, as
well as the optimization of the model variables. Sec. 2
presents an overview of the subjective tests used to develop
and validate PREQUEL. Results are presented in Sec. 3.
Sec. 4 presents a discussion based on this research.

1 THE PERCEPTUAL REPRODUCTION QUALITY
EVALUATION FOR LOUDSPEAKERS (PREQUEL)

A general overview of PREQUEL model can be found in
Fig. 2. The modeling approach largely follows the one taken
in the ITU-T standardization of perceptual measurement
methods for the assessment of speech quality [2–5]. Each
consecutive step performed by the psychoacoustic model is
explained in Sec. 1.1 and each consecutive step found in the
cognitive model is explained in Sec. 1.2. The PREQUEL
model contains a set of variables θ, which are described
in the next sections. These variables are optimized with
a procedure given in Sec. 1.3. Their optimized values are
provided in Table 3 and are omitted from the text. Moreover,
for Eqs. (1)–(7) the transforms will only be provided for the
reference signal X(t) and its derivatives, as the transforms
on degraded signal Y(t) and its derivatives are identical.

1.1 Psychoacoustic Representation
Input of the Model: All signals used in this paper are

in stereo and sampled at 48 kHz. Each signal has at least
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Fig. 2. The processing pipeline of PREQUEL.

1 second of silence recorded before the music fragment
starts. Binaural recordings of the reference signals were
made with a HATS, using the best quality loudspeakers
available, in the ideal listening spot, and in the best quality
environments available. The overall sound quality of the
reproduced signals are judged by subjects using an sMOS
scale. The reference recording with the highest sMOS is
used as the input X(t) for the model. The left and right
channel are processed independently and their results are
combined in a final degradations comparison step. The de-
graded signal Y(t) is the binaural recording of the acoustic
output of the system under test.

Calibration: The first step in the psychoacoustic model
is to calibrate the level in relation to the absolute threshold
(i.e., a function of frequency) by generating a sine wave with
a frequency of 1000 Hz and an amplitude of 40 dB(SPL).
This sine wave is transformed to the frequency domain,
using a windowed Fast Fourier Transform (FFT) with a
21.34 ms frame length (1024 samples at 48 kHz sampling).
The frequency axis is converted to a modified Bark scale
and the peak amplitude of the resulting pitch power density
is normalized to a power value of 104. This procedure is
equivalent to the procedure used in the POLQA standard
[4] and matches the sound pressure as used in the subjective

J. Audio Eng. Soc., Vol. 64, No. 10, 2016 October 787



BEERENDS ET AL. ENGINEERING REPORTS

Table 2. The warping function that maps the frequency scale in Hertz to the pitch scale in Bark (e.g., the power in every 4 consecutive
bands in the range of 2,001–4,000 Hz are binned together).

Frequency Range (Hz) 0–1,000 1,001–2,000 2,001–4,000 4,001–8,000 8,001–16,000 16,001–24,000
Number of Consecutive Bands 1 2 4 8 16 32

experiments to the sound pressure used in the psychoacous-
tic model to calculate the internal representation.

The same 40 dB(SPL) sine wave is used to calibrate the
psychoacoustic (Sone) loudness scale using Zwicker’s law
[29]. Further, the integral of the loudness density, over the
Bark frequency scale, is normalized to 1 Sone.

Level Alignment: The overall power level of the reference
signal X(t) is scaled to match the overall power level of the
degraded signal Y(t).

Start Stop Indication: Recordings of the silent periods at
the beginning and end of X(t) and Y(t) only contain back-
ground noise from the recording environment. Thus, they
should be excluded in the calculations of the objective qual-
ity measurement. The model assumes a Gaussian distribu-
tion of the background noise and uses the mean X and stan-
dard deviation σ of the absolute power of the first 0.5 sec-
onds at the start of the file as a footprint. The parts that only
contain background noise are detected by sliding a frame
with a size of 21.34 ms, without overlap, over X(t) and Y(t).
The samples within this frame are considered noise if their
average absolute power is within a range of 0 to 3σ of X .

Further, all consecutive samples at the beginning and
end of the signal that are classified as noise are cut from
the signal. Subsequently the reference and degraded signals
only contain the music fragment without the silence at the
beginning and end of the sample. This procedure mimics
the behavior of the subjects, who ignore low background
noise levels in a room when they judge the loudspeaker
reproduction quality [27].

Temporal Alignment: Loudspeakers do not produce time
warping in their output. Thus, a simple time alignment is
used that searches for a single global estimate of the delay
between the reference and degraded signal. The lag is found
using the cross correlation between X(t) and Y(t) and the
aligned overlapping intervals of X(t) and Y(t) are used in
the remainder of the pipeline.

Time Frequency Analysis: The human ear performs a
time-frequency analysis. Therefore, the algorithm applies a
windowed FFT with a Hamming window of 1024 samples
on X(t) and Y(t):

W (T ) = 0.54−0.46 cos
(

2πT
1023

)
, T = 0 . . . 1023, (1)

where W(T) is the amplitude per sample. The overlap
between subsequent frames is 75%. The windowed FFT
results in functions of time and frequency, which are trans-
formed into power spectra. Phase information within a sin-
gle frame is discarded. The results are the power density rep-
resentations PXf ,n and PYf ,n, the power per frequency band
f, and frame index n. These representations are calculated
for both the left and right channel of the binaural recording.

Noise Reduction: Acoustic recorded signals typically
have a lot of background noise, which subjects do only
marginally take into account in their assessment of the
loudspeaker reproduction quality [27]. Therefore, we have
to suppress this background noise. The first 0.5 seconds of
the reference and degraded signals after the level alignment
are classified as noise footprints. These footprints are
transformed to FFT power domain. The average power of
each frequency band in the reference and degraded noise
footprints is calculated and subtracted from PXf ,n and
PYf ,n respectively.

Frequency Warping: The Bark scale (i.e., the psychoa-
coustic equivalent of the frequency scale) models that the
human hearing system has a finer frequency resolution at
low frequencies, than at high frequencies [29]. This is im-
plemented by binning consecutive frequency bands of PXf ,n

and PYf ,n, and summing their corresponding powers. The
warping function that maps the frequency scale in Hertz to
the pitch scale in Bark (see Table 2) approximates the val-
ues given in the literature [30]. The resulting signals PPXf ,n

Table 3. The 13 optimized model parameters θ. Using these values in the perceptual modeling, the maximal
correlation between the predicted and the subjectively perceived sound quality is obtained.

parameter effect Equation value

θ1 frequency smearing (2) 0.050
θ2 time smearing (3) 0.990
θ3 time smearing (4) 1.000
θ4 Zwicker power (5) 0.145
θ5 time inhibition (6) 0.300
θ6 frequency inhibition (7) 0.400
θ7 timbre 1 (8) 3,400 Hz
θ8 timbre 1 (8) 3,000 Hz
θ9 timbre 2 (9) 1,000 Hz
θ10 timbre 2 (9) 1,000 Hz
θ11 self masking (10) 0.300
θ12 self masking (11) 0.600
θ13 self masking (13) 0.100
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and PPYf ,n are the pitch power densities of the reference
and degraded signals.

Frequency & Temporal Smearing: Masking at a percep-
tual level is the result of two distinct processes, a bio-
mechanical and a neural process. Bio-mechanical masking
is implemented using time-frequency smearing. It partially
models psychoacoustic masking along the time and fre-
quency axis and quantifies how the power from one time-
frequency cell smears towards neighboring time-frequency
cells [6]. Smearing in the frequency domain is applied on
PPXf ,n and PPYf ,n as follows:

P P X f,n = θ1 P P X f −1,n + P P X f,n . (2)

Smearing in the time domain is applied on PPXf ,n and
PPYf ,n as follows:

P P X f,n = φ( f )P P X f,n−1 + P P X f,n, (3)

where

φ( f ) =
{

θ2 if f ≥ 500;
− θ3−θ2

500 f + θ3 otherwise.
(4)

Zwicker Transformation: The reference and degraded
pitch power densities are transformed to loudness densi-
ties in Sone per Bark using Zwicker’s law [29]. This func-
tion transforms PPXf ,n and PPYf ,n to their corresponding
loudness densities LXf ,n and LYf ,n as functions of time and
frequency, as follows:

L X f,n = Sl

(
10T H R f

0.5

)γ [
0.5+0.5

P P X f,n

10T H R f

γ

− 1
]

, (5)

with THRf being the absolute threshold for the minimum
audible field and γ being the Zwicker power, also denoted
as optimized variable θ4.

Frequency & Temporal Inhibition: Masking caused by
inhibition at a neural level, where firing neurons suppress
the firing rate of nearby neurons [28], is implemented in the
loudness domain by reducing the loudness of a single time-
frequency cell as a result of nearby loud time-frequency
cells. Inhibition in the frequency domain is applied as fol-
lows:

L X f,n = L X f,n − θ5
(
L X f −1,n + L X f +1,n

)
(6)

and equivalently in time domain as:

L X f,n = L X f,n − θ6L X f,n−1. (7)

Timbre Indicators: A music fragment that is reproduced
with an unnatural balance between high and low frequen-
cies leads to lower perceived sound quality [31]. This is
characterized as its tone color or timbre. A first global
timbre indicator is calculated using the average loudness
between the low (24 Hz – θ7 Hz) and high (θ8 Hz – 24,
000 hz) frequencies in LXf ,n and LYf ,n, resulting in timbre
values T1Xc and T1Yc. Subsequently, τ1 was derived from
both the left and right channel:

τ1 = max
(

T 1Xle f t

T 1Yle f t
,

T 1Xright

T 1Yright

)
. (8)

Next, a second global timbre indicator is calculated using
the average loudness between the low (24 Hz – θ9 Hz) and

high (θ10 Hz – 24, 000 Hz) frequencies in LXf ,n and LYf ,n,
resulting in timbre values T2Xc and T2Yc. Subsequently, τ2

was derived from both the left and right channel:

τ2 = max
(

T 2Yle f t

T 2Xle f t
,

T 2Yright

T 2Xright

)
(9)

Both τ1 and τ2 will be used in Section for the prediction of
the sMOS.

Calculation of the Internal Difference: Two signals that
only differ in overall loudness need a minimum difference
in order to be discriminated. This is modeled by disturbance
density Df ,n, as a function of time and frequency:

D f,n =
{

max(0, RD f,n − M f,n) if LY f,n > L X f,n;
max(0, RD f,n − M f,n)θ11 otherwise,

(10)

with

M f,n = max
(
L X f,n, LY f,n

)
θ12 (11)

being a self-masking algorithm and

RD f,n = |L X f,n − LY f,n|, (12)

being the raw disturbance density. This algorithm pulls the
raw disturbance density towards zero, which represents a
dead zone (i.e., before a time-frequency cell is perceived
as distorted). As such, it models the process of small time-
frequency level differences being inaudible.

1.2 Cognitive Model
Asymmetry: When the system under test introduces a dis-

tortion to its input, it results in two different percepts of the
output: the input signal and the distortion. However, when
a distortion is introduced by leaving out a time-frequency
component in the signal, this decomposition is not possi-
ble. This results in a distortion that is less objectionable,
which is modeled by introducing an asymmetrical distur-
bance density DAf ,n:

D f,n

(
LY f,n

L X f,n

)θ13

. (13)

Aggregation over Time and Frequency: The asymmetri-
cal disturbance density DAf ,n (see Eq. (13)) is integrated
along the frequency axis. The result is D ALi ,n , where Li

is the Lp norm used for the frequency integration, ranging
from L1 to L10. The calculation of a range of Lp norms al-
lows to find the Lp norm that best models the effect of a
local loud distortion. Such a distortion has the same average
effect as a global soft distortion, which has a more severe
effect than expected when applying straight forward L1 av-
eraging. Further, the left and right channel of D ALi ,n are
merged by calculating the maximum disturbance over left
and right in each frame n. The merged disturbance density,
M D ALi ,n , is integrated along the time axis. This results in
M D ALi ,L j , where Lj is the Lp norm used for the time in-
tegration, ranging from L1 to L10. The output of the model
is a vector ! that consists of M D ALi ,L j , τ1 and τ2. For
each music signal fragment recording k, made of a certain
loudspeaker at a certain location, one can calculate an !k.
The set of !ks and, sMOSks is used in Sec. 3 to predict the
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overall sound quality of loudspeakers using multiple linear
regression.

1.3 Training of the Model
The algorithm that optimizes all model variables is im-

plemented in C#, and runs on a 2.4 GHz Intel(R) Core(TM)

i7-3630QM CPU with 16 GB of RAM using 64-bit Win-
dows 8.1. The optimization includes the 13 variables de-
scribed in previous section and 16 additional variables that
are needed to prevent instabilities of the model. Each vari-
able is given a lower and an upper bound, based on ITU’s
existing perceptual evaluation models for speech [1–5] and
music [6–9]), and a " value that describes a finite increment
of the variable. Model optimization is carried out on the ba-
sis of the correlation between the subjective MOS (sMOS)
and the objective MOS predicted by the model (oMOS).

The time complexity when calculating all possible com-
binations of values for all variables is O(M N ), where N is
the number of variables and M is the number of different
values of each variable, based on ", the lower bound and the
upper bound. Thus, the time to calculate the global optimum
has a growth factor defined by the granularity M of the sys-
tem. In order to maintain a high value of M and a time com-
plexity independent on the exponential relation between M
and N, a heuristic optimization algorithm, called Random
Restart Hill Climbing [32], was implemented. While this
algorithm does not guarantee that the optimal solution will
be found, it is a lightweight optimization strategy that pro-
vides excellent results. The algorithm starts with a random
state of variables, with values between their lower and up-
per bound, and iteratively attempts to find a better solution
in terms of correlation between the sMOS and oMOS, by
incrementally changing a single variable of the solution
with its corresponding ". The change is accepted if the
correlation coefficient of the current solution, calculated
using the monotonic linear regression of the output X of
the model and the sMOS of all data used in the training,
is higher than the previous iteration. The search is termi-
nated and restarted with a new random state if it stagnates
over 30 iterations. So, instead of indefinitely trying to op-
timize a solution from one initial condition, a wider area
of the solution space is searched. The search is terminated
if the correlation coefficient of the best solution is above
a user defined threshold. Thus, the time complexity of the
algorithm is no longer dependent on the granularity of the
system. Instead, it is defined as O(d), where d is the longest
path to a solution above the given threshold.

2 SUBJECTIVE EXPERIMENTS

2.1 Experimental Setup
Although audio quality testing is best performed by run-

ning blind subjective tests [33] this is not possible when
subjects have to assess audio quality in different listening
rooms and listening positions. Even if a subject is moved
blindfolded from one listening room to another listening
room, necessary in our subjective tests, they still would de-
tect in which room they would be seated by just listening to

Table 4. The six music fragments used in the first
experiment, a subset of the fragments as used

during the development of the MPEG standard
[34]. They were chosen on the basis of their high
sound quality and variety in genre as judged by
expert listeners in the MPEG standardization.

artist / composer fragment

Georges Bizet Carmen
Unknown Trumpet solo
Tracy Chapman Fast car
Unknown Accordion
Unknown Bass guitar
Unknown Percussion

Table 5. The six music fragments used in the second and third
experiment. They were chosen on the basis of their high sound
quality and variety in genre as judged by three expert listeners.

artist / composer fragment

Daniel Cross The Spinroom
Stanislav Moryto Per Uno Solo
Antonı́n Dvořák Slavonic Dance Op. 72
William Walton Set Me As a Seal Upon Thine Heart
Johann Sebastian Bach Sarabande Partita II, BWV 826
Georg Philipp Telemann Ach, Herr, Straf Mich Nicht In

Deinem Zorn

their own footsteps. Furthermore running tests in random
order was not feasible due to limited resources. This exper-
imental approach may result in biased judgments and thus
further testing will be required to validate the model.

All tests were carried out in a stereo setup, except one
surround setup where extra surround energy was created
using a Yamaha V-2400-RDS surround processor. The dis-
tance between loudspeakers and subjects was adapted to the
specific characteristics of the loudspeakers, large systems
were assessed between 2 and 4 meters, small PC loudspeak-
ers as close as 0.5 meters. An overview of the five different
listening rooms with the loudspeaker layout and the T60

reverberation times is given in Fig. 3.
Three experiments were run for the training and valida-

tion of PREQUEL. A total of 12 musical fragments were
used that included classical large orchestras, opera/choir,
solo instruments, and pop/rock recordings (see Tables 4
and 5). These fragments were chosen on the basis of their
high sound quality as judged by three expert listeners, all
of which had more than 30 years of experience in judging
acoustic recordings over loudspeaker setups. All fragments
had a duration of about 30 seconds and were played con-
secutively with silences of four seconds between each frag-
ment. Each fragment was individually level aligned for the
optimal playback level relative to the other fragments. For
acoustically recorded signals, they represent the level that
was estimated to be equal to the level as experienced dur-
ing the performance. For non-acoustically recorded signals,
they represent the average preferred level by the subjects,
ranging from rock at a level of about 90 dB(A) to solo
harpsichord at a level of about 65 dB(A), fast averaging.
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Fig. 3. Layout and reverberation time T60 of the five different listening rooms used in the three subjective experiments. All dimensions
are in meters, the dashed areas represent Left (L), Right (R), Left Surround (LS), and Right Surround (RS) loudspeaker positions.
Dash-dotted areas represent the listening positions used in the subjective tests (on- and off-axis).

The level differences between the loudspeakers were
small (<3 dB(A)) except from musical fragments that con-
tained a large amount of low frequency content in which
cases small loudspeakers sounded significantly softer (to
about 10 dB(A)). The range of dBA levels measured sug-
gest that there were loudness differences between some of
the loudspeakers, which were not equalized for the listen-
ing tests or objective measurements. These loudness differ-
ences largely arise out of frequency response differences be-
tween devices. However, equalizing overall loudness could
have given rise to unrealistic mid-range level differences.
Thus, on the one hand, loudness differences leaked into
the quality judgment predominantly as a side effect of the
big differences between the low frequency response of the
loudspeakers. On the other hand, we have assured an eco-
logically valid approach, which was one of our key aims.

All fragments in each experiment were binaurally
recorded for processing by the PREQUEL model, using
a HATS. Each individual experiment used six subjects who
judged a sequence of six music fragments.

Each experiment was performed by six subjects using
naive and expert listeners. A total of 18 subjects were used,

consisting of 16 males and 2 females, with an age rang-
ing from 22 to 74 years. The subjects were not screened
for possible hearing loss. Subjects were instructed to judge
the overall sound quality produced by several loudspeaker
reproduction systems relative to each other. Note that the
subjects had no direct “ideal” reference available and used
an unknown, internal, ideal to judge the loudspeaker repro-
duction quality. An evaluation scale based on the Nether-
land’s school reporting system was used for the judgments
ranging from 1 (“bad”) to 10 (“excellent”) (cf., [35]). As
such, this scale was the best choice for the participants to
express their quality opinion. Before the experiment started
subjects had a training session that provided them a di-
rect comparison of music fragments played over any sys-
tem they would like to hear. During the test any direct
comparison was made available upon request by a sub-
ject. This direct comparison, combined with the fixed order
of play out, allowed them to develop a stable “ideal” ref-
erence and stable quality judgments on all systems. Five
different rooms were used in the three subjective tests, see
Fig. 3 for an overview of the properties of these rooms. One
subjective test typically lasted about six hours.
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Table 6. The six loudspeaker systems used in the first experiment. Their
quality ranges from a high quality studio monitor and a high quality

omnidirectional system (radiating over 360◦ in the lateral plane) to average
consumer type systems, including a very low quality PC loudspeaker.

Loudspeaker Type of reproduction

Bloomline 2 channel, 4x electrodynamic, omnidirectional
KEF Corelli 2 channel, 2x electrodynamic, front radiating
Home build 2 channel, 2x electrodynamic, front and rear radiating
Aldi Life 5454 2 channel, 2x electrodynamic, front radiating
Grimm Audio LS1 2 channel, 2x electrodynamic, front radiating
PC Mini Speaker 2 channel, 2x active electrodynamic, front radiating

The first two experiments were performed using two high
quality loudspeaker systems with excellent acoustic prop-
erties (see Figs. 3A and 3B). Subjects were seated at 2, 3
or 4 different positions in each room and judged the quality
of 6 loudspeaker systems, ranging from high quality studio
monitors, including both electrodynamic and electrostatic
loudspeakers, a high quality omnidirectional loudspeaker
system to very low quality PC loudspeakers (see Tables
6 and 7). All loudspeaker systems were assessed using
the optimal on axis position as well as up to 3 different
off axis positions. All recordings used in the objective as-
sessment were made at exactly the same spots where the
subjects judged the audio quality. There were a total of
36 different loudspeaker reproduction evaluation setups,

which resulted in a total of 216 fragments that had to be
judged.

The third experiment was performed using three average
to low quality listening rooms (see Fig. 3C-E). Subjects
judged 11 loudspeaker systems in the 3 listening rooms at 2
different positions. The quality of the systems ranged from
a high quality omnidirectional system (electrodynamic), to
very low quality consumer type loudspeakers. Furthermore,
the experiment included a 4-channel surround system and
a number of 2-channel room reverberation algorithms (see
Table 8).

There were a total of 22 different loudspeaker repro-
duction evaluation setups, which resulted in a total of
132 fragments that had to be judged. Note that in each

Table 7. The six loudspeaker systems used in the second experiment. Their quality ranges
from high quality studio monitors (electrodynamic and electrostatic) and a high quality

omnidirectional system (radiating over 360◦ in the lateral plane) to average consumer type
systems, including a very low quality PC loudspeaker.

Loudspeaker Type of reproduction

Bloomline 2 channel, 4x electrodynamic, omnidirectional
KEF Corelli 2 channel, 2x electrodynamic, front radiating
Quad ESL-989 2 channel, 2x electrostatic, front and rear radiating
Tannoy Small Studio Monitor 2 channel, 2x electrodynamic, front radiating
Tannoy Large Studio Monitor 2 channel, 2x electrodynamic, front radiating
PC Mini Speaker 2 channel, 2x Active electrodynamic, front radiating

Table 8. The 11 loudspeaker systems used in three rooms in the third experiment. Their quality ranges from a high quality
omnidirectional system (radiating over 360◦ in the lateral plane), to average and low quality consumer type systems.

# Room Loudspeaker Type of reproduction

1 Living room Canton mini modified 2 channel, 2x electrodynamic, front radiating
2 Canton mini modified + 2 channel, 2x electrodynamic, front radiating

Yamaha Room Simulator Hall Vienna
3 Boston CR65 2 channel, 2x electrodynamic, front radiating
4 Kitchen Bloomline 2 channel, 4x electrodynamic, omnidirectional
5 Tetra Home Build + Aldi + 4 channel, 4x electrodynamic, 2x front radiating and

Yamaha Surround Field Filler 2x rear radiating RS and LS
6 Tetra Home Build + Aldi + 4 channel, 4x electrodynamic, 2x front radiating and

Yamaha Room Simulator Hall Vienna 2x rear radiating RS and LS
7 Samsung TV 2 channel, 2x electrodynamic, front radiating
8 Hallway KEF Corelli 2 channel, 2x electrodynamic, front radiating
9 Bowers & Wilkens DM6 2 channel, 2x electrodynamic, front radiating

10 Bowers & Wilkens DM6 + 2 channel, 2x electrodynamic, front radiating
Yamaha Room Simulator Hall Vienna

11 Cheap Brand 2 channel, 2x electrodynamic, front radiating
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experiment listeners were rating the combined quality ef-
fect of the loudspeaker, the room, the spatial reproduction
mode, and any spatial processing employed.

2.2 Subjective Results
The subjective results consisted of three databases with

entries that represent a musical fragment recording of a
certain loudspeaker/positioning and its associated opinions
of the subjects in terms of sMOS. This section discusses
the analysis of these raw sMOS values for each of the
three databases. To ensure the ecological validity of these
analysis, we applied a baseline-free analysis, lacking data
normalization (cf., [35, 36]), which can be conveniently ap-
plied in real-life situations [37]. First, the statistical consid-
erations taken in the analysis will be presented. Next, in line
with the main aims of this study, we will analyze the sub-
jective MOS (sMOS) scores, using an univariate repeated
measures analysis of variance (ANOVA) (Huynh-Feldt).
The listeners sMOS scores served as dependent variable
and music style, listening position, and the loudspeaker,
the room, the spatial reproduction mode, and any spatial
processing employed served as independent variables. This
will be done for each database separately after which gen-
eral conclusions are drawn.

All three tests are reported with their F-values, degrees
of freedom, power, and level of significance. If the level
of significance is close to zero, this is denoted with p <

.001, instead of providing an exact statistic. As measure of
effect size partial eta squared (η2) is reported to indicate the
proportion of variance accounted for (i.e., a generalization
of r/r2 and R/R2 in correlation/regression analysis) [38]. The
threshold for reporting results is p !.010. Effect size and
the amount of explained variance are interpreted in line with
Cohen’s suggestions [39] (p. 157). On average, interaction
effects between factors explained ±40% of the variance
the factors did separately (range eta2 : .075 − −.416).
Hence, the interaction effects did not provide additional
information; therefore, interaction effect have been omitted.
Moreover, results of pairwise tests between the music style,
listening position, and loudspeakers (and listening rooms)
also have been omitted, as these only provided the obvious
significant effects (e.g., PC speakers received lower sMOS
scores than high end speakers) due to a lack of data samples.

Database 1: Music was shown to have a significant,
medium effect on the listeners’ sMOS scores, F(5, 25) =
3.167, p = .024, η2 = .388. However, both the listening
position (F(1, 5) = 81.029, p < .001, η2 = .942) and the
loudspeakers (F(5, 25) = 45.026, p < .001, η2 = .900) were
shown to be a much more powerful predictor of the sMOS
scores. The listeners’ sMOS scores correlated very high
with each other (between r = .649 and r = .964 (Pearson),
see also Table 9).

Database 2: Neither music (F(5, 25) = 2.726, p = .097,
η2 = .353) nor position (F(3, 15) = 2.491, p = .130,
η2 = .333) were shown to have a significant impact on the
listeners’ sMOS scores. However, with both aspects the η2

indicates medium effect size that can be accounted for. The
loudspeakers did have a significant impact on the listeners’

Table 9. Listeners’ consensus table for database 1, including
their average. In all cases, the Pearson correlation was highly

significant (i.e., p < .001).

1 2 3 4 5 6 ave.

1 .731 .725 .760 .834 .786 .881
2 .869 .834 .881 .793 .929
3 .905 .852 .693 .921
4 .926 .649 .933
5 .771 .964
6 .849

Table 10. Listeners’ consensus table for database 2,
including their average. In all cases, the Pearson correlation

was highly significant (i.e., p < .001).

1 2 3 4 5 6 ave.

1 .894 .766 .812 .660 .869 .913
2 .816 .826 .723 .892 .941
3 .747 .651 .867 .889
4 .753 .827 .915
5 .810 .840
6 .963

Table 11. Listeners’ consensus table for database 3,
including their average. In all cases, the Pearson correlation

was highly significant (i.e., p < .001).

1 2 3 4 5 6 ave.

1 .709 .701 .721 .705 .791 .907
2 .778 .652 .431 .617 .828
3 .719 .512 .646 .857
4 .598 .714 .866
5 .684 .770
6 .867

sMOS scores (F(5, 25) = 58.824, p < .001, η2 = .920) and
were shown to be powerful predictor of the sMOS scores.
The listeners’ sMOS scores correlated very high with each
other (between r = .651 and r = .894 (Pearson), see also
Table 10).

Database 3: Music were shown to have a significant,
medium effect on the listeners’ sMOS scores, F(5, 25)
= 3.484, p = .027, η2 = .411. Listening position did
not have a significant effect on the sMOS scores given,
F(1, 5) = 1.534, p = .271, η2 = .235. The loudspeaker-
room combination were shown to be a powerful predictor
of the sMOS scores, F(10, 50) = 27.084, p < .001, η2 =
.844. The listeners’ sMOS scores correlated medium to high
with each other (between r = .431 and r = .791 (Pearson),
see also Table 11).

Conclusions: Music did have an influence on the sMOS
scores. However, this was shown only to be significant
in two of the three databases. Only for one of the three
databases, position was shown to have a significant in-
fluence on the sMOS. This warrants additional research
to unveil the influence of listening position across music
styles, listening rooms, and speakers. With all three data
sets, the speaker-room combinations did have a very strong
influence on the sMOS scores. Taken together, the three
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databases each contain substantial variance in their sMOS
scores, which can be contributed to the three factors influ-
enced. Moreover, the three databases together also include
a substantial variance in listening rooms, ranging from two
recording studios to three typical consumer listening rooms
(i.e., living room, kitchen, and hallway). Given the vari-
ance within the complete set of data, the listeners showed
a remarkably high consensus in their sMOS scores.

Tables 9–11 show that all subjects have a Pearson correla-
tion of at least 0.77 (one of the naive subjects) between their
individual opinion and the average opinion of the group,
while the best subject (one of the experts) has a correlation
of about 0.96. Thus, despite the fact that subjects men-
tioned that they had issues regarding the difficulty of taking
into account all possible degradation parameters (e.g., tim-
bre, envelopment, localization, and room resonances), the
consistency in judgment is very high, verifying the high rel-
evance of the subjective data when describing the overall
perceived sound quality.

Taken together listeners agree in their judgment on music
across a wide range of circumstance despite their inevitable
intra and inter-individual differences [36]. This suggests
that the quantification of loudspeakers’ perceived sound
quality by assessing their acoustic output using a set of mu-
sic signals is indeed possible. Hence, the development of
the proposed generic PREQUEL, a unique, robust psychoa-
coustic model of listener’s percept of loudspeakers’ sound
quality, should be feasible.

3 MODELING RESULTS

3.1 Scale Normalization
In order to obtain a wide acceptance of the modeling

results the final subjective sMOS scores used in the model
development are normalized per experiment in two subse-
quent steps. First, a Z transform is applied:

X ′ = X − µ

σ
, (14)

with X the original sMOS score, µ the mean, and σ the
standard deviation of the data of each subject, providing
X′, the normalized sMOS score. Next, the X′-score of each
fragment is transformed to the standard ITU five point scale
[10] (also see Table 1), for each experiment individually, as
follows:

X ′′ = 4(X ′ − min{X ′})
max{X ′} − min{X ′}

+ 1, (15)

with min {X′} and max {X′} being respectively the lowest
and the highest X′ score in each experiment. Consequently,
the results presented next are based on these X′′, the ad-
justed, normalized ITU standard sMOS scores.

3.2 Training and Validation
The three experiments described in Sec. 2 were used

to create three databases, each consisting of a collection
of binaurally recorded music signals and their normalized
sMOS (also see Sec. 3.1). As explained in the introduction,
for each music fragment the recording with the highest

sMOS in the database is used as the reference recording
X(t) in the modeling. Furthermore, each database is split in
two equal parts: a training part and a validation part. This
splitting is carried out on the basis of four equal sMOS
intervals where both the training and validation set contain
an equal amount of sMOS values in each sMOS interval.
Within each interval the training and validation set were
chosen randomly. This method prevents overtraining and
enforces a balanced training and validation set where both
have a full range of sMOS values. The performance of
the model is measured in terms of the Pearson correlation
coefficient r between the values !k of each fragment, as
introduced in Sec. 1.2, and its corresponding normalized
sMOSk values, using a monotonic polynomial regression.

Training: The training set is used to develop a robust
model that is trained context independently in such a way
that it is able to quantify the subjective sound quality of
loudspeaker systems. First, all model variables θ, τ and the
Lp norms L1freq, L1time, L2freq and L2time are trained (see
Sec. 1.3), resulting in the optimized variables that are the
same for all databases. This allows the calculation of the
following single value ψ for each binaurally recorded music
signal:

ψ = −
[
M D AL1 f req ,L1timeτ1

]

− 0.045
[

M D A2
L2 f req ,L2time

+ τ1τ2

]
(16)

+ 0.034
[
τ2 + τ−1

2

]
.

In general context effects in subjective experiments can
to lead to a different quality judgment of the same degra-
dation, e.g., due to voting preferences or the balance of
conditions. This problem can be illustrated with the fol-
lowing example. Assume that we have a robust model that
gives an average objective measurement score of 2.5 on the
ITU scale to a signal. Next, this signal is presented in two
different experiments. In the first experiment, this signal
has the highest quality of all degraded signals while in the
second experiment it has the lowest quality of all degraded
signals. This results in two different sMOS given by sub-
jects in the two experiments while the degraded signal in
both experiments is exactly the same [40].

The solution to this context problem is to use a differ-
ent 3rd order monotonic polynomial regressions for each
database. This procedure is in line with the procedure fol-
lowed in the ITU standardization [1, 3, 5, 8] and results
in a robust model that can predict the sMOS context in-
dependently. The correlations of the multiple polynomial
regression for the trained parts of the three databases are
0.94, 0.90, and 0.88 per loudspeaker per individual listening
position averaged over all music fragments. This regression
uses the same optimized values for θ and the same nonlin-
ear function to calculate ψk for all data in A, while using a
context dependent polynomial Pm for each database, where
m is the index of each database. So a different polynomial
P is used for training the model to fit each of the three data
sets, while in the validation the polynomial associated with
the database from which the validation set was taken, is
used.
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Fig. 4. The blind prediction for part B of database DB1, plotted
per loudspeaker per individual listening position averaged over all
music fragments. The graph shows the 95% confidence interval
of the subjective data and the ideal linear regression Y = X. The
correlation coefficient between the predicted values and the sMOS
is 0.86.

The model should be able to predict the quality of a wide
variety of loudspeakers in a wide variety of environments.
Thus, the optimized variables θ, the nonlinear function used
to calculate ψk, and the monotonic polynomial P must be
identical for all data processed by the model. These con-
straints guarantee that the context of each experiment does
not influence the performance of the model.

Validation: The validation of the model is performed
using a blind prediction of the sMOS on the signals in the
validation set. First a ψk is calculated with Eq. (16), using
the trained θ, τ and the Lp norms, for each recorded signal
in the validation set. Next the three polynomials associated
with the training part of the three databases are applied to
the unseen parts of the data sets to validate PREQUEL. The
results can be found in Figs. 4, 5, and 6 for each database
separately. The figures show the 95% confidence intervals
for the normalized sMOS values and the ideal linear regres-
sion Y = X. The resulting correlations between PREQUEL’s
predictions and the normalized sMOS per loudspeaker for
the unseen validation parts of the databases are 0.86, 0.92,
and 0.78, per individual listening position, averaged over
all music fragments.

4 DISCUSSION

This paper presents a unique loudspeaker reproduction
quality measurement model baptized Perceptual Reproduc-
tion Quality Evaluation for Loudspeakers (PREQUEL).
Whereas previous research focused on the quantification
of the loudspeaker system itself or on specific technical
aspects of the acoustic output of loudspeakers, this paper
focuses on listeners’ overall perceived sound quality of
individual loudspeakers in a wide variety of listening envi-

Fig. 5. The blind prediction for part B of database DB2, plotted
per loudspeaker per individual listening position averaged over all
music fragments. The graph shows the 95% confidence interval
of the subjective data and the ideal linear regression Y = X. The
correlation coefficient between the predicted values and the sMOS
is 0.92. The severe outlier is a small PC loudspeaker judged at close
distance.

Fig. 6 . The blind prediction for part B of database DB3, plotted
per loudspeaker per individual listening position averaged over all
music fragments. The graph shows the 95% confidence interval
of the subjective data and the ideal linear regression Y = X. The
correlation coefficient between the predicted values and the sMOS
is 0.78.

ronments, using a large and diverse set of music fragments.
The major difference with classical technical measurement
approaches is that one does not need any technical mea-
surements on the loudspeaker and or listening room, only
recordings of musical fragments played over the loudspeak-
ers in the room for which one wants to assess the quality,
are used. This new perceptual modeling approach thus al-
lows a direct comparison between the perceived quality of
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an excellent loudspeaker in a bad reproduction room/non-
optimal listening spot with that of a poor loudspeaker in an
excellent reproduction room/optimal listening spot using
any musical fragment. The approach thus also takes into
account the well-known effect that a loudspeaker may have
excellent sound quality for one type of music signal on a
specific room-listening spot, while for another type of mu-
sic signal on the same room-listening spot it may show a
low sound quality.

PREQUEL’s perceptual measurement approach intro-
duces two major challenges:

1. Subjects cannot be provided with an acoustic refer-
ence signal and, consequently, base their judgment
on an unknown reference. However, a perceptual
model needs a known reference signal in order to
be able to predict the perceived quality. We created
these reference signals by making binaural record-
ings with a Head and Torso Simulator (HATS), using
the best quality loudspeakers available, in the ideal
listening spot in the best quality listening environ-
ments available. Then, the reference signal with the
highest subjective quality given by subjects (i.e., the
sMOS) is compared to the acoustic degraded loud-
speaker output.

2. Handling different levels of background noise in the
listening environments. This is solved by introducing
a noise suppression algorithm, which operates on
both the reference and degraded signals.

The solutions to these challenges led to the development
of the PREQUEL model, which uses a perceptual model to
predict the subjective quality ratings of loudspeaker repro-
duction systems. Consistency checks performed on the sub-
jective data show correlations of 0.77 and higher between
listeners’ individual opinion and the average opinion of the
group. Hence, the listeners very much agreed on the over-
all perceived sound quality. Nevertheless, simultaneously,
it shows that true ground truth is perhaps not possible, with
such a significant variance within the group of listeners
(i.e., so-called interpersonal variance, where intra personal
variance can be a challenge as well) [41, 36].

Three databases were created for the training and val-
idation of PREQUEL. Using half of this available data,
PREQUEL is trained in such a way that it is able to accu-
rately predict the subjective quality ratings. The other un-
seen half of the data is used to validate PREQUEL, which
showed that it is promising model to quantify the sound
quality of a wide range of loudspeakers systems in a wide
variety of listening rooms and listening positions. A high
correlation was achieved for both the training (r = 0.91)
and validation (r = 0.85) phases. Please note that for two
of the three databases these results were obtained without
measurements roughly in the middle of the scale.

Follow-up studies should address further model valida-
tions. Possibly such studies could also come up with solu-
tions for the difficulty to carry out blind subjective tests in
the context of the perceptual modeling approach. Further-
more, new subjective tests could use the combined effect of

loudspeaker distortions and other types of distortions such
as amplitude clipping in amplifiers, low bit rate audio cod-
ing, and time clipping in packet switching networks. The
combined effect assessment allows to run double blind tests
over a limited set of degradations. It is expected that PRE-
QUEL’s performance will drop when new subjective data
becomes available. However, PREQUEL allows adaptation
(or retraining), allowing it to cope with these new loud-
speakers, rooms, and spatial reproduction modes as well as
types of distortion. Additionally, this process may unveil
these aspects’ relative importance.

Distinct implementations of the HATS will also impact
PREQUEL’s performance, as it is currently tailored to one
specific HATS. Possible influential parameters are the size
of the ears, the size of the head, and the difference in quality
of the microphones used in the HATS. Especially the size
of the ears and head have a significant impact on the head
related transfer functions (HRTFs) and, thus, possibly on
the model development. However, as with other sources of
variance PREQUEL can be retrained.

Taken together, this paper introduces a HATS-based
model that enables to predict the reproduction quality for
loudspeakers taking into account the impact of the repro-
duction room. It quantifies the loudspeakers’ overall per-
ceived sound quality by assessing their recorded acoustic
output using a set of music signals in combination with a
perceptual model. It is founded on a set of three databases,
which include listener’s subjective judgments of music frag-
ments in a range of listening rooms and listening positions
reproduced over a wide variety of loudspeakers. The key
difference with classical measurement approaches is that it
does not require any technical measurements on either the
loudspeaker or listening room.
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